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ABSTRACT 

In this paper a novel philosophy of irreversible dynamics is 

formulated, This philosophy stems from the fact that the kinetic 

equations available (Boltzmann, Landau,, Bogolubov-Balescu-Lenard) 

are essentially exact and cannot be improved. That isv for kinetic 

gases (those whose behavior is characterized by that of one 

typical particle) these equations constitute closed, statistically 

complete knowledge, 

This thesis is demonstrated by using atstechnique that sepa- 

rates completely the different time components exhibited by the 

evolution of a gas when an appropriate parameter (characteristic 

of the regime in which the gas is found) is small. The expansion 

in this parameter is pushed up to its breaking point marked by the 

presence of an intrinsic divergence. With our technique we can 

pinch off the series at this point and remain with a closed, finite 

system of equations. The argument is made more compelling by the 

fact that the same divergence occurs for all gaseous regimes (short- 

range« weak-couplings dilute weak-coupling and Debye). 

We furthermore prove that not all isolated gases will even- 

tually become kinetic In fact,, the necessary and sufficient 

conditions that the initial departure from equilibrium must satisfy 

for kineticity to eventually set in ("absence of parallel motion") 

are deduced directly from the Liouvllle equation. 

When statistical information about a g*s is needed beyond 

that afforded by the knowledge of the motion of the average 

particle a new asymptotic expansion of the Liouville equation must 

be devised. Thus,, for example, the preponderance of three-body 

collisions demands knowledge of the evolution of the average pair 

of particles. For this situation a pair-kinetic expansion is 

Introduced. A hierarchy of increasingly more informative des- 

criptions of a gas is thus envisaged. 

As a by-product of our analysis,, (i) we have found the limits 
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of validity of Bogolubov's assumption of synchronization and of 

his boundary condition and (ii) we have proved the equivalence 

of Kirkwood's time averaging procedure (made systematic) with 

Bogolubov's technique. 
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SECTION I 

INTRODUCTION 

"he aim of this paper is to obtain from first principles the 

equations that govern the evolution in time of a system that con- 

tains a large number of particles. That is, we are concerned with 

systems such as a macroscopic portion of a body (not necessarily a 

gas) or a large stellar system like a galactic cluster. 

The description is of course statistical. We want to be able 

to describe the evolution of arbitrary initial departures from 

thermodynamical equilibrium. 

The behavior of our systems over very long periods of time is 

of particular interest. We believe that, in virtue of Gibbs' 

general H theorem, most isolated systems will tend to thermody- 

namic equilibrium. We are therefore interested in obtaining 

solutions of the fundamental equations of motion which are valid 

for times comparable to that needed for the system to reach equi- 

librium. 

The lrreversibility in the evolution of our systems will of 

necessity play a very prominent role. 

The equation that we have to solve in order to describe our 

"many-body" system is the Schrödlnge-- equation for N bodies: 

t  p7" s n   T (i.i) 

or, more generally, when a statistical ensemble is considered, the 

equation for the density matrix: 

■ [»-, n (1.2) 

- 3 - 
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where IT Is the Hamiltonian operator and 

The complete quantum mechanical description is not yet of full 

interest because our understanding of truly non-equilibrium quan- 

tum effects (like non-equilibrium phonon-electron interactions in 

solids) is as yet rudimentary. 

We shall confine ourselves therefore to classical (i.e. non- 

quantum) phenomena here. The fundamental equation for our study 

is accordingly the Liouville equation: 

9t (1.3) 

where F^ is the probability density in the phase space of N 

bodies and *f(*     is the Polsson bracket operator. 

All three of the equations written down are of the form: 

%+«F-' (1.4) 

where "ff      is a linear operator acting on P. This fact makes 

the problem of finding solutions valid for long times very similar 

in classical and in quantum systems. The class of functions is 

very different in the two cases: a Hilbert space in quantum 

theory of equation (l.l) and a limit of a sequence of (real) Banach 

spaces in classical theory. 

In Section 2 we show that a direct perturbation expansion of 

equations of the type (1.4) leads in general to approximations 

which are not uniformly valid for all times. 

In Section 3 a new mathematical frame work is set up for 

handling problems In which a small parameter plays a prominent 

role. The relevant formulae are summarized in Section 4. 

- 4 - 
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After a brief outline of the statistical mechanics that we 

propose as correct (Section 5) we start our discussion of the 

Liouville equation (Section 6). The concepts of kinetic theory 

and the basic regimes for which kinetic equations are available 

are also defined in Section 6. 

Then we take up successively the weak coupling (Sections 7 

and 8), short range (Sections 9,  10, and 11) and Debye expansions 

(Section 12). 

Generalized master equations as well as the kinetic theories 

are deduced directly (i.e. without use of the BBGKY hierarchy) 

from the Liouville equation in Section 13. 

Pair-kinetic equations are introduced in Section 14. 

In Section 15 some aspects of inhomogeneous gases and of the 

transition into fluid flow are discussed. 

Finally in Section 16 the equivalence of Klrkwood's and 

Bogolubov's techniques is proved. 

- 5 - 
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SECTION II 

NON-UNIFORMITY IN PERTURBATION THEORY 

We rewrite (1.4) by means of a decomposition 

//- H'* eHi (2.1) 

where  £  is a small number: 

e«i (2.2) 

and both H  and H  are linear. We now try to find solutions 

to 

by assuming P analytic in £, : 

F-F°+ LFx+ikF*+ .. . (2.4) 

Furthermore, the initial value of F(t), F(0), is given and, for 

simplicity, does not contain £ 

-?t*0 (2.5) 
From (2.3) we obtain 

fit + n r * -ft r (2#7) 

2fi+H*Fx*-HXFx 

$t (2.8) 
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and so on. The general solution of (2.6) is, using (2.5) 

frö - i* V*J (2.9) 

Substituting (2.9) into (2.7) and integrating: 

F%J.-*'*'<ffc*'fa -+*]4rm (..10, 

Similarly (2.8) yields 

(2.11) 

and so on. 

These formulae correspond to the expansion in powers of 

the operator ^fi(-7^6) 

(2.12) 

'0 
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For the very complex problems of interest to us here the 

series (2.4) is very rarely convergent. We demand that it should 

always by asymptotic. We must therefore insure that P  is the 

"main" contribution to the answer and that £F     is a small 

correction to P , that is 

F° 
o(c)     all t (2.13) 

The condition (2.13) must hold for almost all values of the para- 

meters of the system; for our statistical mechanical theory, for 

long times and over most of the phase space in particular. If we 

want an even better approximation than the one afforded by 

F & F + LF (2.14) 

we have to consider P  as well and demand that it lead to a 

small correction. For example, if 

LF C(£)      aJI  t 
F' 

the approximation 

F & F'+LF1 + £ZFZ 

(2.15) 

(2.16) 

will be superior to (2.14). It is possible for (2.16) to be a 

good approximation even if (2.13) does not held, but rather: 

: - i - ofr*)     *II t (2.17) 

P 0 F1, By glancing at the explicit form of the functions 

and P2 given by (2.9), (2.10), and (2.11) it will be clear that 

the conditions for a good approximation very often break down. 

- 8 



For example, if ff      and ff      are simply numbers 

(2.19) 

and 

so that 

/:•• ±nF(o) 

yl- (£*)Vl 

(2.18) 

(2.20) 

It is clear that this ratio is not of order C" after a time 

4 Z    ~ (2.21) 

The simple perturbation expansion (2.4) is therefore inadequate. 

A moment's thought will convince the reader that (l*3), the 

Liouvllle equation, is satisfied by the positions and momenta of 

the N bodies as well as by F . In this case (1.3) simply runs 

along the orbits backwards in time. The perturbation expansion 

leads then to what astronomers call "secular terms", that is 

orbital elements that increase with time. To remove this dif- 

ficulty, Poincare devised a refinement of the perturbation ex- 

pansion which has found important extensions outside of celestial 

mechanics (Poincare - Lighthill method (l)). The technique con- 

sists basically in expanding both the dependent and the independent 

variables in power series of the small parameter. 

On the other hand, Bogolubov has refined an expansion tech- 

nique (synchronization) Invented by Enskog (2) to solve Boltzmann's 

equation, which is capable of giving approximations to (1.3) valid 

for times comparable with the time required for the approach to 

- 9 . 

«V- -<.—«%- 
• i ' - ■"  -• 



K.T*XK-r:fr«ET>5T'rf %^ rr r.Tr.".: v vt VJTT 

equilibrium. The Enskog-Bogolubov technique basically consists in 

expanding the time derivative of the dependent variables in a 

power series in £ • Bogolubov's technique is valid only for the 

lowest significant approximation to the lowest moment of 9P /£t 

(i.e. SF/££        , to be discussed at great length later) 

and attempts at extending his calculations (3) have so far met 

with lack of success. 

Bogolubov's synchronisation assumption corresponds to select- 

ing a certain class of physical systems (kinetic gases) described 

by the Liouville equation. The meaning and limitations of this 

choice will be made clear in the sequel, since in this paper we 

find the precise conditions for kineticity. 

Instrumental for the understanding of these conditions is 

the analysis of perturbation theory for large times. The asymptotic 

analysis of perturbation theory, originated by Bogolubov, has been 

made more explicit by M. Rosenbluth and N. Rostoker (11) and 

recently by E. Prieman (5). The latter development, aside from 

deriving kinetic equations, illuminates their physical significance 

and allows for making explicit the dynamical approach to 

kineticity. 

It is a most remarkable fact that the situations which can be 

handled by expanding the independent variable a la Poincare are 

intractable by expanding the time derivative a la Enskog and vice 

versa. 

The purpose of the next section is to present an entirely 

new approach (method of extension) to the problem of obtaining 

significant (i.e. uniformly valid) approximations to functions 

which, like JP or P , depend on some small parameter. The 

approach is extremely general because it includes, among others, 

as very special and mutually Incompatible cases both Poincare•s 

and Enskog's techniques (cf. Pig. 1). 

- 10 - 
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Method of 
Extension 

Extension of 
+ht, Range 

Extension of 

the Domain 

fcinenrc'-IJghthill 
Expansion of 4he 
IhitpandttWt Variable 

Enskeg-Bogdubov 
Expansion of'Hie 
"fimt'Devi/a.tive 

Th«oh^ dp 
%rs i'stent 

RajjIeigV) - 
Schroeffr^eY 
Expansion 

k/r k Wo oAJs 
77m« Averaging 
fYoCedvre. 

Fig. 1. 

It will be clear that the general scheme Is a framework into 

which one must inject Information about the asymptotic behavior 

of the functions discussed. For the application carried out here, 

it will be seen that the direct perturbation expansion itself 

yields very important clues as to the relevant behavior of the 

functions of interest. 

It is worth noting "hat the Enskog-Bogolubov expansion can be 

applied to the calculation of quantum mechanical stationary states, 

The result coincides with the fiayleigh-Schrb'dinger expansion (see 

Fig. l). Successively more "persistent" effects correspond to 

making the solution stationary on successively slower clocks. 

- 11 - 

t v^.^'V""'»^ 



^üfc-*•% turnt Tti.mj:.%si. RL^ -*i" -.:* «^-.^-»*-■wu.'-- .*M _ 

SECTION III 

THE METHOD OP EXTENSION 

This section is divided into two main parts: first the con- 

cept of extension is defined, then the framework for the applica- 

tions is set up. In the next section a summary of formulae is 

given for the convenience of the reader. 

A, The Concept of Extension 

We consider a class of single valued mappings 4<pl     with 

domain £    and range f    . The nature of the mappings, of the 

domain and of the range need not be specified now (they are of 

course assumed to be given). They will become clear to the reader 

shortly (Section 3C). Thus, 

4> •     S —> s (3.1) 
now consider any mappings £V    of   £    onto    XjT cS We 

(3.2) 

which is one to one and has an inverse    Er        .    The set   £     in 
which    Xf     is embedded 

/D   IS (3-3) 

is presumed of high dimension. Thus, 

dim S £   Ai™ Ig a Air* & (3.4) 

For applications, dim g  is often °o .    £ is called the ex- 

tension of the domain. We have thus injected £      into  $ 

- 12 - 
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Pig. 2, 

We now define an extension of $     , £  as any single-valued 
mapping of £  into />*" with 

if and only 

<t> 

(3.5) 

(3-6) 

means the composition of the two mappings £f where fgo Ef 

and   jp  . We shall use the notation ^ ^ X     (see flS* 2)< 
The analytic continuation of a complex valued function of a 

complex variable is an extension with an additional structure. In 

particular, a continuation like ^ ^  jar of a real valued 

function is an extension. The reader is urged to consider this 

familiar situation in the light of our definitions. 

- 13 - 
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Consider further the identity mapping of 8    onto itself 

s-^-s 3f 
and the sets $       that include £   . 

if it satisfies (3.6). See fig. 3. 

(3.7) 

Jr   is any extension of Jf 

Pig. 3. 

We then have, for the restriction of 

[Hi, ■     xs ■— * 

j£   to   JS> [£J. 

(3.8) 

therefore 

f JJL - f. 
-1 

(3.9) 
^JIJ- 

- 14 - 
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One readily obtains the induction formula! 

t-UihrW (3.10) 

This simple theorem is fundamental. It expresses the fact 

that all extensions of 9 are "induced" by extensions of the 

identity mapping. Thus, it will he possible to understand the 

link between the Poincare-Lighthill expansion of the independent 

variable and the Enskog-Bogolubov expansion of the time derivative. 

Let xe£t  /«/,/££, 7*?* and XtS*       then 
(3.1), (3.2), the definition of ^   , and (3.8) read 

</>:    X —> y(*) (3.11) 

Eg: SM (3.12) 

7r 

id) (3.13) 

(3.14) 

We attach to the point 5      local coordinates $1 C?>) where 

A  is a function of X with local inverse ( X and Ä  cor- 

respond in general to several dimensions). Thus, the embedding 

equations for the domain are 

JV • I (*)   <"'M X.Z(*) (3.15) 
The parameter A.    allows for an arbitrary reparametrization of 

the domain. Such reparametrization may be equivalently performed 

before or after the embedding. It is worth noting that it is 

- 15 - 
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essential to Lighthill's procedure that Af*) ^fc / 

In terms of our detailed notation (3.10) reads 

y(x)*7(r) (3.16) 

The reason for introducing (3.11) to (3.I6) is that the local co- 

ordinates St'     and the functions 3C(x*)  are essential for 
explicit calculations. 

The accurate representation of an extension is given by the 
commutative sequence 

Pig. 4. 

The simpler version given above is designed to present a compli- 
cation unnecessary for our applications. 

B. Important Special Cases 

Two particularly useful examples of the embedding equations 
(3.15) are the following linear embeddings for one-dimensional 
real domains. 

(i) "Singular*' file deling. Let 

- 16 - 
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t=xJl m"*j'"-j £,-*"*,• '- oar) 

We have 

,^   I ^44l      =    i-c*1 (3.18) 

and therefore £  is in a Hilbert space if •< < j^ 

(il) "Regular" embedding. Let 

Z.*-*, $ 'ZT,--, K'^y- (3-19) 

We have 

<»0      * «< -1 
(3.20) 

and therefore £     is in a Hilbert space if «< ^ .£ 

The reason for the terminology will become clear in the 

sequel. We give now some simple examples of extended functions. 

(i) Consider the mapping <p     defined by 

y(y.)-e~"* 0.21) 

where X  and y     are real numbers, «f real, <• M      .By 

means of (3.17) we can extend J/   and hence d      in infinitely 
many different ways. For example, 

(ia) with 

-^" (   *«,  Slj        *  '  «  ,  £h ,  '  ' V    S  ^* (3-22) 

- 17 
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then 

e-"x =» e -*Jo 

(lb)    with 

then 

e -•<x -*i 

(ic)   with 

ite,ii,...,ihi...;«4(v*i/-«; 
then 

e -^   -UWx/~J 

(ii)    Consider the mapping    y    defined by 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

y(%) * e "'~* (3-28) 

where  X > y   are real as before and •*" is real and  < x . 

With the help of (3.19) we can produce again infinitely many 

different extensions. For example 

(iia) with 

then 

X ( i"d> $1,  • > * ;Sr\, " >J ^ ** 

.""* =* e"^ 
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then 

(lib) with 

e -*/* =-> e"fi 

(3.31) 

(3.32) 

(lie) with 

(3.33) 

then 

-xA -*(*«/*+£) 
e- (3.3t) 

The point of ohe examples given above is to make clear a 
fundamental Issue: the behavior in ^C is drastically affected 

by extension. The extension must be chosen in the manner most 
convenient for whatever problem is at hand, 

C. Application of the Concept of Extension to Uniformly Valid 
Approximations *   v 

We consider now a class of mappings /TJ      with domain D 
and range R. Thus, 

•P :     J) —> R (3.35) 
is a function of physical interest, its domain and range are 
therefore defined by detailed consideration of the problem at hand. 
For example, if we are concerned with the Liouville equation, the 

class   f + j is the class (pi of  (1.3), the domain  D 
is the N-body phase space and the range R is the set of positive 
real numbers. 

- 19 - 
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We now apply the concept of extension to both D and R i.e., 

we identify $     of part A of this section, with D on the one 

hand and with R on the other (see table I). 

We therefore consider one to one invertible mappings of both 

the domain and the range. Thus, 

Ej '        D-+I» (3.36) 

tH   '    *    X* (3.37) 

We further embed iß and IR in regions of sufficiently high 

dimension D and R which we call the extensions of the domain 

and of the range respectively: 

I0 C D (3-38) 

^* ^ £L (3-39) 
We also consider a region, R , such that 

(3.40) 

and the class of mappings ^ of R into R 

$ :       £ -* R.' (3.41) 
We furthermore consider four "star" regions,    D*, R*, R**, R1*, 
such that: 

DCD* (3.42) 

H   C   Rr (3.43) 

RCR (3.44) 

R c R (3.45) 

-   20 - 
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Pig. 5. 

,*i 

We use both the Identity mappings for D and R: 

and 

(3.46) 

(3.47) 

We now consider the extensions of T   and ft      . That Is, by 

(3'6), £ extends jk  if and only if 

(3.48) 

(3.49) 

- 21 - 
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Also,  5Ä  extends ,3*  if and only if 

and 

(3.50) 

#    ~ (3.51) 

In particular, we extend the Identity mappings. J 

extends J!£   if and only if 

and 

z> ■* 

Also, J/*        extends /Z 

"     ft*   i 
if and only if 

-*. R 
and 

Zo£/f *Jft 

(3.52) 

(3.53) 

(3-54) 

(3-55) 

IS ej 

:      iTableil 

*# 

£" - IßCR, R  cft »^-B 

*&—** 
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We clearly have the two induction theorems: 

f ° [2D]J0  
s[£]lb (3-56) 

We furthermore introduce points by the following definitions 

fi} = 0, /V/ -_ D / [Tj = i * (3-58) 

[ih*.   frh&J&h^M'*'* (3-39) 
Local embedding equations in D and R are respectively 

at ^ j     2^'= £Ys)  where 5* ■* sfe)     (3-60) 

at y*  $    >2'»^/A)  where ^* ^)  (3.61) 

In addition we must consider the extension of functionals. 
We have, as before, 

/;      3) (3.35) 

consider now a functional, such as a differential or integro- 
differential operator, A       : 

A  •      T    —>  f (3.62) 

If T Is extend >d by: 

f =^£ (3.63) 

- 23 - 
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we shall say that  f-£ is an extension of A 

upon restriction: 

A':     £ —* -f 

If and only if, 

(3-64) 

Of course, a definite range is presupposed for A 

The broad aim of extension is to facilitate the understanding 

of the usually intricate behavior of a function of small parameter 

especially where a direct expansion fails. In J. R. Oppenheimer's 

words, extension is a method for "opening" a problem: 

mixed behavior 

T 

I^Tg  s/or/est 
charges 

Tj slower 
changes 

Pig. 6. 

D. Examples of Extension 

(i) Perturbation Theory. We begin with a familiar situation 

which is an extension of the range. We set, for a scalar valued 

- 24 - 
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function g 

If we now choose as embedding coordinates 

y.-3, £-3/*,-, n^Av-- 

(3.65) 

(3.66) 

then the image of R is very simply parametrized by g. We 

further set 

9; = <V ft 
with 

«=»0 

£= 0 
■;-i 

(3.67) 

(3.68) 

and 

&(^^it...^hl-.)-io^^K- (3.69) 

Note that by convention superscripts are powers. We then have 

f«J , I «,■ 4- « •'. 
JB    /_„      a/ ^ 

(3.70) 

as desired. 

Even for very elementary perturbation expansions, the situa- 

tion is slightly more complex. Thus, if 

3&)*e -*6 04* < <1 (3.71) 

- 25 - 
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Then t   *■ ^T ■JJ(rfy   *? and from the series: 

2&M-^fSfi^:----*V,<3i+*cV"-     <3-72' 

we find 

S^.Vi-^-'V-^f ^^V" (3. 73) 
or, with (3.67) and (3.68) 

(3-74) 

Substituting into (3.69) 

u-t^'^y» 

^.Xr-XAlcJA^'t]** 
JKt 

(3.75) 

A much more imaginative ansatz than (3.65) or (3.69) is used 
for nonlinear oscillations. Thus, let 

<j ft) ' A(t) S^u B(*) (3.76) 

with 

B(*)*Wt+l> (3.77) 

Power series for A and B (or b) are then used. The extension 
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of the range here is not linear. That is, 

G(K >Ki , . . . yH) . ..) = 4ft)&VB ft) (3.78) 

with 

Mr'^    Wl/ß 
(3-79) 

whence 

Efi -3W 
IR=   3 s'' (3.80) 

Nemytskii and Stepenov (4) use what amounts to a polynomial 

extension of the range to analyse solutions near singular points. 

(ii) The Poincare-Llghthill method. Here we choose a linear 

extension of the identity mapping on the domain whose values 

"restrict" to t. Thus, let 

/TV?-., £,..., ?»J--')]Ip*i (3-81) 
that is we have a linear function   / (21 2"*   ¥       ywhich, 
when 

V * ?;•(*) (3.82) 

5 =• S(t) 
(3.83) 

is equal to t. Thus, 

TfoS,- ^-)" f V^/0 (3.84) 
where   ^Vl//)t'  * °  ^ c* —* Ö  «# On ID, (3.84) 

yields the famous expansion of the independent variable 
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*-£ ^i(*)r;U) 
(3.85) 

Since 

^£3 <*£ ^i 
«£t   tfts *& (3.86) 

We obtain from (3.85) 

(3.87) 

This formula constitutes an expansion of the derivative which, 

as we shall see, is completely different from the Enskog-Bogolubov 

expansion. 

A special case of the Poincare-Lighthill extension is ob- 

tained with a regular embedding sequence of the type (3.19). In 

fact, if (3.83) reads 

and if we choose 

then, from (3.84) we have, on ID 

(3.88) 

(3.89) 

(3.90) 

(iii) The Enskog-Bogolubov expansion of the time derivative. 

We consider the extension 

- 28 - 
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^)=*Kr., 2; ...r«,...; 
and a singular sequence of the type (3.17) 

d£ 
We now take 

if 
9s 

=^ S!/i   i<) 
»ft 

(3.91) 

(3.92) 

(3.93) 

The kinetic technique In effect averages successively over ^ o   t 

This will be discussed in more 

detail later because it leads to an important equivalence theorem: 

The Synchronization Assumption of Bogolubov is Equivalent to the 

Time-Averaging of Kirkwood. A special case of (3.93) has been 

independently considered by E. Prieman (5). Other related works 

are listed in (^J. 
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SECTION 4 

SUMMARY OP FORMULAE FOR EXTENSION 

-i 

and    R:    ED:  0—* -Tj ,   £^: g->T^ 
functions:    "f =& £ .=, £ a £  ■= -P 

The Concept of Extension 

Consider the mapping       ^    :       0   "~^ / •    Extend its 
domain   Eg   :      £ —+ ±f C J^ .    Let local coordinates 

on    ,£,     be given by J*« - %>(")£) •    Extend the mapping; 

Induction Theorem 

Consider the identity mapping Jf :      ö  —* 0 .    Then 

^£   **^ j£ gives     ^ =0eJs>*ZS.    Kote[frJsEf 
Application to Uniform Expansion in a Small Parameter 

Considerf f: £—>£,    & '•   £—*#' . Extend D 
™~ . Extend the 

Induction formulae: 

&k ■ < OJlt • *; 
The Interrelation of the mappings and points is as follows: 

J£ sP°jh rn- 2" 

We have 

* 

£ 

* 

»I 
r 

Pig.  7. 
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SECTION 5 

THE MODIFIED UHLENBECK DIAGRAM 

Before entering the details of the theory we summarize our 

views by means of the following modification of the Uhlenbeck 

diagram 

LiouvTIle equation 

„ Generalized master equation 

pafr-lcinef/a 

equ&+'<yns 

/ 

K'*he+ic ecjucuKon 

ßoqo/ubov^Oftbye) 

Pig. 8. 

The detailed meaning of the terms will become clear as we proceed. 

We will prove that there are gas dynamic regimes for which a kinetic 

description is impossible. By means of appropriate generalizations 

of the Enskog-Bogolubov expansion technique we shall obtain equa- 
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tions valid for such regimes. An analogous situation occurs when 

the transition into the regime of fluid dynamics is considered. 

This theory is however considerably less developed (cf. Section 15), 

The quantum mechanical theory also awaits development. Prom the 

discussion of Section 3, it is clear that extension is a very broad 

framework with which a great many problems can be approached. 

An example of an expansion which is "intermediate" between 

the Poincare-Lighthill and the Enskog-Bogolubov techniques is dis- 

cussed by means of a single model for the Navier-Stokes equations 

(6). 
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SECTION 6 

LIOUVILLE EQUATION - KINETIC PARAMETERS 

The purpose of this section is to set up the appropriate ex- 

pansion scheme that allows for the discussion of the kinetic equa- 

tions (defined precisely at the end of this section) starting from 

the first principles represented by the Liouville equation. 

Kirkwood has in part achieved this scope by his time averaging 

method (7), but his theory failed completely in giving the errors 

committed (e.g. it was impossible with Kirkwood's theory to ob- 

tain the corrections to Boltzmann's equation). 

Bogolubov made considerable progress in giving a scheme that 

distinguishes gases with neutral elementary constituents from 

ionized gases from the start. His theory was thought also capable 

of giving the corrections to the Boltzmann equation (j£) (3-body 

effects) as well as to the newly obtained kinetic equation for 

plasmas (8) (Bogolubov-Balescu-Lenard equation). The hope of ob- 

taining correctly the three-body effects with Bogolubov1s expansion 

is in fact unfounded (see Section 11). 

Bogolubov's theory fails in two major respects: a. It fails 

to give finite (i.e. represented by convergent integrals) cor- 

rections to the kinetic equation, b. There is no possiblity to 

determine the conditions of validity of the lowest approximation. 

Both problems will be discussed and solved in the sequel. First 

of all, we have solved the problem of determining the conditions 

under which kinetic equations hold. The requirement that a gas 

should approach thermodynamical equilibrium via a kinetic regime 

defines sharply the class of correlation functions whose presence 

at t = 0 will be 'forgotten" so as to permit the contraction: 

Liouviire 

Pig. 9. 
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The class of these correlations will be called kinetic. The sepa- 

ration of these two classes leads to an important new principle in 

kinetic theory--the principle of absence of parallel motions 

(Section 8). 

Secondly, we shall prove a very general phenomenon: to a 

sufficiently high order in the (Bogolubov) expansion that leads 

to the kinetic equations there is a divergence due to the extreme 

persistence of correlations (with a correlation length comparable 

to a mean free path) which arises because of successive two-body 

collisions. The breakdown occurs in second order for the short 

range expansion and for the Debye expansion, in fourth order in a 

weakly-coupled gas and in fifth order for a dilute weakly coupled 

gas. The breakdown however is not alarming because the expansions 

carried out are asymptotic. 

If we want to go beyond the kinetic theory therefore we must 

devise a "weaker" limiting procedure. The key concept in this 

theory is the concept of closure (Section 9). 

This concept has been made possible only by a full ex- 

ploitation of the method of extension. With this method we can 

in fact select solutions of the Liouville equation with a desired 

degree of "simplicity" of approach to equilibrium. The simplest 

choice is the kinetic. It will be clear that there is a complete 

hierarchy of increasingly more informative solutions of the 

Liouville equation. It will also be clear that the amount of in- 

formation obtained at a particular level of "complexity", if the 

approximation Is carried out to the point of closure. Is statisti- 

cally complete. Thus, In our view, kinetic equations (which do 

satisfy closure) are exact. 

At the highest level of complexity, one I'inds the generalized 

master equations (Section 13) which determine tbp probability 

distribution of the momenta of all the particles in the system. 

The starting point of the theory is the Liouville equation (9) 
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for the N-body distribution function   F : 

cLP 
cLt 

N 
- O (6.1) 

P  depends on time and on the 2N vectors X^ and -ft s M jU 
which define the position and momenta of +-he particles (of mass^«/) 
in phase space. Since the N masses which interact through the 
two-body potential, 7fj.' ,  satisfy Newton's laws of motion: 

^ 9 Vis 
B  • Vt ;   Pi — £ 

we can rewrite (6,1) as; 

9f\!L IF" 
36     iT, **i    " i%i*w 

'  li-Z TL;F"<*0 

(6.2) 

(6.3) 

where    1^,    is the ..nteractlon operator: 

y- ^ pjf;   JZT'Wi 
(6.4) 

It is convenient to introduce also the kinetic energy 
operators: 

*■&■&     ^2,"^ (6.5, 

and the total energy operators: 
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6*/      i^6<J^5 J (6.6) 

where  S  has the range 

i < s< ti 

With this notation (6.3) acquires the convenient form 

We take F  to be normalized to one by 

(6.7) 

J      y V T      " 
where V is the volume of the box enclosing the gas. 

If we now introduce the distribution function? 

J       V Y 
A/ 

we find that they satisfy 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

where 

36 
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L =2 /.„• Lu = K^^c Yi^.W,       (6.12) 

Since we are particularly interested in the properties of a 

gas where both N and V are large but for which the mean density 
$- is a given number: 

*-'J 3'V°" (6.13) 
we consider only the limit of (6.11) as W*-* °° and "V"—*» ** 
subject to (6.13). 

The resulting hierarchy of equations (Bogolubov 1946, Born 
and Green, Kirkwood, Yvon (10)) is: 

— t WSFS-  HLSF**' (6.14) 

which, in contrast to the Liouville equation (6.8) make explicit 
the role of the mean density. We want to emphasize, however, also 
the role of the strength S of the two-body interaction. We 
make, accordingly, the hierarchy (6.14) dimensionless with respect 
to the kinetic temperature hn v£ , the range Y^ and the 
strength 6 cf the two-body interaction. We thus obtain 
remembering (6.6)  and also (6.9) and (6.10): 

g.*r-(£)iV44mu 9t " '   *mW '  * -'VOWS' (6.15) 

where all the quantities are now dimensionless (we do not employ 
new symbols be^.ise no confusion can arise in the sequel). The 

equation (6.15) has the advantage over (6.14) or (6.8) of making 
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explicit two very important parameters of the theory of gases hr/ 

and To/*^V^     • In terms of these parameters, the basic 

regimes of gas theory are defined as follows: 

(i) Weakly-coupled gas 

hr0 ^ 1 <*< 
« (6.16) 

(ii) Dilute gas with strong short range forces (short- 

range regime) 

4>0   „ 1 
*?/*<!, ^ (6.17) 

(ill) Gas with Coulomb forces in the "Debye regime" 

3 I 
6   >     ImV L.-€«1 (6.18) 

(iv) Dilute weakly-coupled gas (DWC) 

(6.19) 

The various regimes are best visualized by means of a diagram: 

A 
*"* 

• S/jort range 

.DWC Weak coupling •Debye 

htf 

Pig.  10. 
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All the points of Interest lie close to one of the axes. If one 

wants to expand, something has to be smallI If one eliminates € 
between the two relations in (ill) for the Debye regime one finds 

l^TT1 

m kv i - X Deb V 
(6.20) 

We now define precisely the concept of kinetic equation. 
Prom (6.15) we have, for the one particle distribution function; 
putting s = 1 

fr<V'(<^ (6.21) 

where, from (6.10) 

F1-/^/:, (6.22) 

where d lj^ denotes integration over all of the phase space 
coordinates with the exception of X^ and V^ 

We say that the gas is in a kinetic regime if the one-body 
distribution function satisfies an equation of the form 

ft'- A M (6.23) 

where 
if 

A fFJJ    , s any functional of F      only, that is to say 

(6.24) 
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The outstanding examples of kinetic equations are the Boltzmann 
equation and the Fokker-Planck equation. The Boltzmann equation is 

|f- * \F1- Jd& WfLföi-ftFt] 
(6.25) 

where ßs I ll~ Z2.I ,   6~     is the two-body scattering cross- 
section , difl the solid angle of scattering and the subscripts 
on the P , function denote the velocities in a two-body encounter: 

Pig. 11. 

The positions on the right hand side of (6.25) are taken to coin- 
cide with that of body 1: 

The Fokker-Planck equation reads: 

(6.26) 

* di     *     sv% 
(-   J 9Mh ^ y (6.27) 
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where A is the coefficient of dynamical friction and B the 

coefficient for diffusion in velocity space. "" 
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SECTION 7 

WEAK-COUPLING EXPANSION 

In view of (6.16) we can write the hierarchy (6.15) as 

2£+KsF*-iI*Fs+zLsF 
H (7.1) 

We shall consider a spatially homogeneous gas excepting Section 15, 

We now introduce the expansions 

(7.2) 

(7.?: 

F^f^+eF3' +- s 
ip3Z 

>. • (7-4) 

4/ 
/=*« ?+*+-£  F        +   •   '  ' 

5"   >-•*"* 

(7-5) 

(7.6) 

It will be seen that the reason for stopping the expansion at 

the places indicated is the breakdown of the kinetic behavior. 

Convention for the Notation. Superscripts represent the 

number of particles in the cluster considered, subscripts denote 

the phase points at which a function is taken. There is never 

need for both since, for example: 

ho - 

^-^•^'''-•"^•-^■■"--^-'""-•"^'"--v-^' 
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F^F'&uXitl^iLxX) (7.7) 

unambiguously. When no confusion arises, subscripts are omitted 
Thus, 

rr*f;fa (7.8) 

A. Perturbation Theory - Choice of Embedding Coordinates 
If we perform the direct perturbation expansion, we have in 

the limit £  —> O 

—  + K  F     — O 
fit (7-9) 

for £ > O   and 

The general solution of (7*9) is 

(7.10) 

*,.*     -rtffrj 
(7.11) 

We now introduce the correlation functions C" by the 
definition: 

Fs* TTF1* C (7.12) 

We introduce the notion of "simple initial value problem" by 
requiring 

C(t*o)*o (7.13) 
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is 

i"."t 

L9£ Jim0 
(7.14) 

In contrast, for the "complete initial value" problem there are 

no restrictions on the initial values of the correlations or of 

the one-body distribution. 

Let us confine ourselves to the simple initial value problem. 

Prom (7.11): 

ä^ v   -Jft s  no 
(7.15) F'CO-^rf 

In particular for s = 2 

F*(*)~*™W (7.16) 

Since the gas is spatially homogeneous: 

and therefore 

0A0 

F»(i)-Fie(o)*rf 
Prom (7«l)* in first order 

St 
But we have 

44 - 

(7-17) 

(7.18) 

(7.19) 
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-nr—w '-fcJ ■•■tt"~~* "*■» """ff"-V~VwT'"T"*r.' 

--fdjC^JCi  tfiY^lJlll (7.20) 

^ o 

where we have exploited the translation invariance of  £//_ and 

then our ability to perform integration by parts neglecting the 

surface terms at infinity (wall potential). Again, from (7.1),  in 

first order for the two-body function: 

9F        t   -i/lrli        y     rlo       j        rJo 
-g£— + K r   *±lzr   -hL1f

m (7.21) 

but again 

1 wr-o 
*■ 2 

therefore 

(7.22) 

We then find, from (7.1)* for the second order one-body 

function: 

ST        1   rx'     »   r    "^ -* , , Tir«fe »LF^-Lje      dtlTf 
St Jo (7.23) 
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We note now that Cor large t, (7.22) gives 

F70 r/e'^^lVr- WcX'JlTf (7. 24) 
where we have used the notation: 

sw-n-^i. & 
We shall use also 

Using (7.24) in (7-23): 

(7.25) 

(7.26) 

(7.27) 

where we have used the fact that for the simple initial value 

problem 

We have therefore 

«r« 

= fe*<; 
(7.28) 

Since the quantity in square brackets is time independent, the 
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approximation breaks down when 

1 

In particular the normalization of F  will be ruined when this 

condition is fulfilled. We will therefore perform an extension of 

the functions F  in order to remove this defect of the direct 

expansion. We need a means of choosing the embedding coordinates. 

The perturbation expansion breaks down with a simple linearity in 

(7.28). We choose therefore our new coordinates in such a way as 

to be able to follow this behavior (ll). Thus, 

T0* t^  ^» et^ .. , ?h » € -6? . . .    (7.29) 

We shall use boldface to indicate the extended functions. For 

the extension of the range we use simply perturbation theory. We 

have accordingly 

(7.30) 

/ =>£ ; F =*r (7>31) 

B. Uniform Expansion for the Simple Initial Value Problem 

(i) Extended perturbation equations. Using the expansion 

(7.2) to (7.6), and the extensions (7*30) and (7.31) we obtain a 

sequence of "extended" perturbation equations. For the one-body 

function we have 

9£ 
-S.O {7-32) 
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9vt    sr, '  - 

3?c    SV,    9^-    - 

2.3L. 

For the two-body function: 

<?£ 
+ t*F=o 

±1        ..*_-,,        ,- a. - ao 

(7.33) 

(7.34) 

(7-35) 

?r.     ?*,   J**   TFs+7T/l£     C7,36) 

(7.37) 

Ü- * *^E"*i£>+uElL 2£?. ££l° 
<^£ ^a;    «?^     (7.39) 
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.13 
2.Q 

For the three-body distribution 

££l\*'£M. 

(7.40) 

(7.41) 

3e 

(7.42) 

«?A'*      ^,3^A       T-SrSl .    ,     r+l   g^—        21 

*% J %       f 21      (7.43) 

We also need, for the four- and five-body distributions: 

+o 

St. — 
(7.44) 

H 

fp- + X4f "-!*£% L,£«- 9/= c f° 

2?, 
and 

ro 

jr. 
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we are solving the simple initial value problem. Therefore at 

f <r«; - f %>; - f %; - £ V«; = o (7.48) 

for the one-body distribution. For the two-body distribution we 

have 

£ *°(o) ^ £ °(ö) £ %J (7.49) 

(7.50) 

%i        The three-body distribution satisfies: 

£*(o)-ll'(0) (T.51) 

P%; = F
J
YO).O (T.52) 

The four-body distribution satisfies 

FVö> 0 

And .' inally 

4. 
+°/A^     TT /)V-N (7.53) 

(7.54) 
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We remark that we do not give the phase space dependence of 

Fs but only the functional dependence of Fs/£ß » o) on f°. 

In the transition to hydrodynamics one will give analogously the 

functional dependence or -f" °n the density, temperature, and 

flow velocity. 

(ii) The Zeroth Order Theory 

(7.32) insures that j£   is ^        independent i.e.: 

£ (°) - £° given       (7.56) 

(7.4l),   (7.44), and  (7.46) can be summarized as 

V7T   +   A   F    - O (7.57) 

which can be solved immediately as 

£ 7r>e     if^.e     c°7T£-irr (7.58, 

(iii) The First Order Theory 

By the lemma (7.20) 

L£a£c~° (7.59) 

Therefore (7.33) gives 

(7.60) 
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or, upon integration 

Therefore, if we require, for our asymptotic series 

~ {**'= ^r^ Jr" £"* = °^ "»^"ty     (7.62) 

we must set, /s r° 

(pTk*0 (7.63) 

r-»(re)=pe*jxr£r 

(7.64) 

hence by (7.6l) 

f'-o 
For the two-body function we have,  from  (7.38): 

!^*X'£"S   jVr (7.65) 
whence 

(7.66) 

Prom (7.42) and (7.45) we also find similar formulae for F31, 
41 — 

F  . In fact 

(7.67) E^)4\-*\xlsf£ 
,21 The transient behavior of Pdl on the 21  scale is given 
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«-2 

X 
YituL'^)^'^JT 

The integral 

* 

V^^-y^A 
goes to zero sharply as %     Increases for fixed finite Vno. 1 —12 
It will be seen that the transients in F  behave very differently 

2 from those in P . 

(iv) Second Order Theory (Landau Equation) 

(7.34) gives with (7.66) 

(7.68) 

Integration with respect to  21  yields: 

£(%)- L *   I-*-*'*    „,ip'r.   ~ ?£' 
X T-^T-iT-r. 9 2T, 

= -/_ 

r    l-e. T1CV> 

z X 
J-Xlii - 

Z. />«/>«• -z[*f-iy*(;r)rn 
- ri 53 
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.   y„_„-^=_-s_r--,=w-.,-5?,.     ™^^_ 

where the operator X (cK J      is given by (7.25). The require- 

merit that £ f      remains a small correction uniformly yields 

i£ 

*iire LS(t**)i*f£ 
(7.70) 

This is the kinetic equation of the Pokker-Planck type first ob- 

tained by Landau. The H-theorem is readily proved on the T^ 

time scale by the conventional symmetrization in the variables 1 

and 2: 

<*■?, 

J (7.72) 
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V, 

Substituting back (7.70) into (7.68) we see that £  satisfi es 

«5*5 

°/»0 £—L [*'****?& (7-73) 

? 
which represents a transient behavior. The decreasing nature of 

is immediately evident from the decreasing range of integration and 

we have in fact 

More precisely, 

<?£ 
- 0, «V fa/zÄg. 

(7.75) 

The result (7.75) actually gives the asymptotic approach to the 

kinetic regime and we shall therefore derive it in detail. 

We have, from (7.73), 

x =-z 
J 

sCxO 

?K 
WSJe^XWjjtfffedji 

(7.76) 

where instead of the particle variables V-,, and V0 we have -V -2 
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used    V^    and   V12    and   a   ^.""i^* •    Therefore, 

Pf1 

n0 
~-22 tofydtfw sjpvfaüK er. 

« 

77) 

but the tensor 

^0   kr UJ^=^/I>^ 
(7.78) 

by virtue of the overlap of two short range forces occurring in 

the integrand« Further 

- 0    for tr 2; > -2 ra 

We can therefore write 

9i 

(7.79) 

(7-80) 
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Thus, the integration over the relative velocities is confined 

to a shrinking sphere of radius  es?l^ /7t6 • The formula 

(7.80) is exact. For large  ^   we can replace it by 

f ^ M <w*t-# f ^ (7.81) 

w<xc 

where we have used the mean value 

(7.82) 

whose existence is required by the Liouville equation, and have 

observed that the term containing 

[a-(i)/»i\ 
1\ 

vanishes identically upon integration over V,p. 

To complete our description of the phase mixing mechanism that 

, we observe that the rate damps  £    °n the time scale  "2^ 

of change of the entropy function 

H - [f /e3 f ^ 
is given, correct to order  c    , by 

(7-83) 
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-ff8T;#^W> 
.oO 

C mie~ ^mJXixx 
whose monotonic decrease is apparent from the positive definite 

nature of the integrand. 

Noting that 

?2Ty <7.85) 

we obtain from (7.39) fDr the two-body distribution 

ri(5*i)rt\Lj*i%tr-    (7-86) 
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where use of the Landau equation (7.70) has been made to rewrite 

9£ ** / 9 ?\        .    The quantity Lx (S*I)3 f£° 
contains six terms: 

a. The two "diagonal" terms cancel the &jh    /(PT? 

correction to the time derivative. 

b. Two are identically zero by the homogeneity of the gas. 

c. Two "off diagonal" terms are new. 

We have in fact 

r7 (svjrii ir+ s,;h n^xpi' (7.87) 

For the three-body distribution we find from (7.43), after a 

calculation entirely analogous to the one just performed 

(7.88) 

This completes the second order theory. One can further derive 

52   / _ * T\ s e^(riy(ri)sif+ 

fj« iL.W tin), f'f 
4t 
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(v) Third Order Theory 

From (7-35) and (7.87) we have 

^   «?/*  o?/' 

;rö  «J?^  ^ ^ (7.89) 

But, from (7.69) we have ^2 

Therefore from (7.89) if  6f     is to remain a "small cor- 

rection1!! 

and for the kinetic condition in third order: 

%'. Ljrr)jyi)jr+ 
3 

^Xß/^jri^if (7.92) 

In (7.92), one sees two separate effects, the improved description 

of the binary collisions and the lowest order contribution from 

three-body collisions. We have in fact, schematically, for the 

collision effects: 
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0     r>0 r / o     rio r f f!f3°f: fif;t, 

Fig.  12. 

POT» the two-body distribution, (7.;10) gives the third order 

equation: 

a.* ■y ao 

4L , ^F*
3
- rfUsJl££l^£jL       (7.93) 
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We can therefore write: 

(7.94) 

where the superscript "as" indicates the asymptotic value of the 

function for large %       • We have therefore for the successive 

contributions in (7-94), using (7.87), (7.88) of the second order 
theory 

This contribution is not singular. Also 

s:w^-C(*yi»m<6rnjft' (7.96, 
mm 

This contribution is very singular through the coinciding 
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.1 

ft singularities of the -3   functions. Furthermore: 

p£T ion0 

(7.97) 

The trilinear terms are singular. 

We finally consider the remaining contribution which, if the 

expansion were valid would cancel the singularities in (7.96) and 

(7.97) 

^kChV'k^&^Q*      (7,8, 

- 4.^*4, * V U *4, (***Xjfä 

We now consider the first contribution to the right hand 

side of (7.98) (of course our major interest is in the trilinear 
terms): 
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- K LI3 rX [(s*H+V% isiqjtf ■   (7.99) 
3 r>o 

Consider the singular contributions. The term 
3 sr^s'XWM' 

cancels one of the two singular contributions in (7.9?)» The other 

singular term in (7*97) is cancelled by the analogous term in the 

trilinear contribution to the right hand side of (7.98). Finally 

we consider the term 

s:L,,s"ijri)j£' 
This term should cancel one of the two very singular contributions 

in (7*96). The cancellation fails however because the three-body 

does not reduce to a two-body propagator. The 

significance of this result will be clearer in the sequel when 

the short-range theory is discussed (Section 11) and the method of 

closure is defined. 

(vi) Fourth-Order Theory 

For the one-body distribution we find, using (7*64) 

—=—  f -=— r-f=— + Z-=— » £ F (7.100) 
9r,    9%    9rx    <?^    *— 
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3 r* 
■f- 

whence, following the same line of argument as In the third-order 

theory we obtain for the fourth-order kinetic condition: 
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SECTION 8 

THE PRINCIPLE OP ABSENCE OP PARALLEL MOTIONS 

We now consider the complete initial value problem. The 

development of the expansion is very similar to that given for 

the "simple" initial value problem. 

The initial conditions are assumed, however, to contain 

correlations which are arbitrary within the symmetry and normali- 

zation requirements imposed by the symmetry and normalization of 

the distribution functions. The correlations are introduced 

through a cluster expansion 

F^r+tf^ir+oko (8.1) 

/s"i F ^F^F1*- ZF*f + & (8.3) 

*   ± F\tFt + iF\F1+£FtA +£ 
(8.4) 

The initial correlations correspond to disturbances imposed 

on the system of particles by means external to it. They are 
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therefore totally unrelated to the interpartlcle force as well as 

to the single particle velocity distribution. We accordingly ex- 

pect them to have a finite, microscopic range r\ . The initial 

correlations will also have a characteristic velocity V , which 

for the purposes of our discussion need not bear any particular 

relation to Vth» We use the perturbation equation for the weak- 

coupling expansion (7.32) to (7.46). 

(i) Zeroth Order Theory 

We have 

9% (8.5) 

and 

ra)*£V+t-*\%) (8.6) 

Similarly: 

£tV-*£'+&*-**£(*) 
-£,21 -/t (8.7) 

(ii) First-Order Theory 

The first-order single--particle distribution satisfies 

J^^'~U      *   \ (8-8' 
In view of the finite range f\    of  ^   , we have 
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and 

(8.10) 

and since the integral of an asymptotic expansion is equal to the 

asymptotic expansion of the integral 

60 

(8.11) 

The non-uniformity is eliminated by the condition 

9f 
sn -o 

which implies that the rate of change of jr 
the 2jJ  scale 

(8.12) 

is a transient on 

(8.13) 

We must, however, insure that F  remains normalizable as T*0 

Increases, that is, we must insure that 

does not increase. 

This normalization requirement implies that the Initial two- 

body correlation does not allow for particle pairs with vanishing 

relative velocity. To obtain this basic result, we observe that 

we can apply the same overlap argument that we used to determine 

the asymptotic behavior of 9r  /^Tt to the quantity 

-V tin. 

(8.14) 
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In fact, 

* O    for I yÄ / 2J > V, * R 
(8.15) 

Therefore, the equation 

# 
<HJ 

(8.16) 

emphasizes the importance of small relative velocities in the 

initial correlation for large 7^, . The condition that £^2^ 

should not increase affects the behavior of Q (in V  V    o) 

in its relative velocity argument. We need, in fact, for any- 

positive ")] 

3-1   'bU^H/j?— (8-17) 

where the factor 

V 
/I i^r 

represents the effect of the solid angle in relative velocities. 

There are clearly two distinct classes of initial correlations; 

those for which V.« i     vanishes for small relative velo- 

cities at least as strongly as 1/^J   , the "kinetic" correlations, 

and those that fail to do so ("non-kinetic"). 

The "non-kinetic" correlations can be separated further into 
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two classes:  "creeping" and "persistent". The correlations that 

violate (8.17) but nonetheless have a finite range cannot dominate 

the secular Landau collision term. A simple example of such a 

"creeping" Initial correlation is offered by one that has a finite 

range and that behaves as 

_j       ' 
■* (8.18) * ~ pz < 

for small relative velocities. This behavior is easily seen to be 

perfectly compatible with the symmetry and normalization conditions 

on ja.  . For the corresponding j£ (f \ we have however 

the "creeping" behavior 

£(%) vfx X (8.19) 

Correlations which are either persistent or even dominate the 

kinetic behavior are those for which the quantity A £ '°J      is 

either zero or contains  % functions in itf*"     . These 

correlations do not have a finite range and have a Fourier trans- 

form which contains 4     functions in j£''J^l3r      . It is worth 

noting that the dynamical evolution of the system leads inevitably 

to such correlations in the limit of infinite time. This phenomenon 

emphasizes that a finite translation in time cannot be applied to 

the limit solutions. 

For the two body distribution we find from (7.38) 

(8.20) 

+ l**'*l'Co) 
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The derivatives of the initial correlations with respect to the 

slower time scales are set equal to zero. This choice corresponds 

to the ambiguity that was introduced in the problem by extending 

functions of a single time variable t to functions on the in- 

dependent time scales 'Z^ 

(iii) Second-Order Theory 

To establish the principle of the absence of parallel motions 

in the initial three-body correlation, we consider the second-order 
equation 

Pi1   9£'   S>£°   ,   -K^.   ., 4J. 
3%   ?rt   «?ra   

ue     * 
-XT*? 

X* 
+ 1 -z r. W.v 

(8.21) 

n 
The fir3t term represents the phase mixing of the initial value 

which is identical to that of ^° of The second term 
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4 

contains the persistent effect 

while the distorsion of the 3   correlation behaves asymptotically 

as 

which is strongly damped by the overlap of L with 

J 
The important term 

£ c      70 
e    4*    /z ^<* 

(8.23) 

S 
is rewritten as 

(8.24) 

which shows how L overlaps successively with the two separate 

position variables of Jl  . The three-body correlation is there- 

by required to satisfy (8.17) in both of its relative velocity 

variables. An entirely similar argument applies to the initial 

four-body correlation. 
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The equation for the two-body distribution is: 

XT, 

+ *V". 

1 {£'(») i1»h£(c)ilo) 4 e * ^fe> '"-grt «  «tfrfTv 

+ e 
-KlZ.C% *M_*  -*M -X-'Z iv^.^^o, 

^ 

+ e. 
-*V, 

(8.25) 

+ e 
-*xs rr%^ Lae^V^^ 

,a^  r£ 
_e        -««fc--™ ^ e / e      '/ <s 

v* 
^ft 
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3   fsc 

+•«- / e      1 It*      g(o)dA + 

+ e 
-***0 

^   .4 (8.25) 

-**£ 
-e -**^Y*> /v-v.^*«% ■ dx-t- 

3 5u  Z5 3> 

+e 
;J/%t*\Zfff+Ifr+k>] <a 
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We note that 

+ 
(8.26) 

*o 

C fm *i) TA fi, J,; & Lx&tr] 
(iv) Third-Order Theory 

Using (8.26) we have for the one-body function the following 

kinetic condition: 

#'- L^rijffjf'^ff ')+L(nxw)IV 
<-U'Jtn&"lXsLM>(:*l)Jii 

+ 
& (8.27) 

This formula differs from the result of the simple initial 

value problem by the first term only which represents the effect 

of the Landau collision operator on the first-order deviation of 

F  from Maxwellian. 

(v) Discussion of the Results 

We have shown that a classical gas will approach equilibrium 

through a kinetic equation only if the correlation functions 

satisfy certain conditions ("the absence of parallel motions") in 

their dependence on the relative velocity variables. These con- 

ditions, which represent the behavior of the correlations for 

small relative velocities, are derived from the Liouville equation 

and are therefore to be regarded as fundamental to kinetic theory. 

The physical significance of the condition of absence of 

parallel motions is that, if a gas is to have a kinetic regime, 

then thex'e cannot be too many statistically dependent particles 

which are at rest relative to each other. 

The approach to equilibrium was shown to be simplest when the 

system is initially perfectly, chaotic —i.e., when no correlations 
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whatever exist among the particles of the gas at the initial time 

(we call this initial conditions the "simple" initial value problem). 

Under these conditions, the approach to equilibrium of the initial 

gas is completely characterized by the behavior of a typical one of 

its particles, that is, the Liouville equation for the distribution 

of N bodies can be replaced by an equation for the evolution of 

the distribution of a single body. 

It is clear, however, that we need not require that all 

initial correlations vanish in order to have a kinetic equation. 

The correlations must however satisfy some conditions which insure 

a sufficient amount of chaos in the initial state of the gas. We 

have shown that these are conditions on the behavior of the cor- 

relation functions for small values of the relative velocities. It 

is intuitively clear that the approach to equilibrium will be 

hindered if a gas contains a large number cf particles with nearly 

equal velocities (i.e., a large number of particles which are at 

rest relative to each other). 

In fact, it was shown that the Liouville equation imposes 

precise conditions on the initial correlations If a gas is to have 

a kinetic regime. Furthermore, when the conditions are violated, 

a kinetic description of the gas Is not possible. These conditions 

are represented by asymptotic formulae for the initial correlations 

as functions of the relative velocities for small relative 

velocities. These formulae constitute a principle, (the principle 

of "absence of parallel motions") necessary and sufficient for 

the existence of a kinetic regime, that replaces the assumptions 

of molecular chaos and the Stosszahlansatz at the foundations of 

kinetic theory. 

The mechanism by which a system of particles relaxes to 

equilibrium results, in the present theory, from our concentration 

on the behavior of the single 

which satisfies the equation 
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P«£-   *"/* (8.28) 

as a consequence of the Llouville equation (1.3) 

i—^^^f^^Q (8.29) 

for the distribution function of N bodies. The evolution of 
P  is time asymmetric as a consequence of choosing a particular 

initial distribution F  (o)   whence F      has the rate of change 

 « L   e   FLO) 
Jt * J (8-30) 

This equation is time reflection invariant only for those F {bj 
which have special symmetries in phase space. 

The kinetic behavior of a gas is conditioned by the phase 
mixing that the operation of L/f      performs on the initial 
correlations through the collision mechanism represented by 

4frf>(-fl   £) . Only when "parallel motions" are absent in 
the initial correlations does the gas have a kinetic regime. In 

this case one has complete irreversibility—i.e., we are insured 
by the H-theorem that the system settles to thermodynamic equilibrium. 
The absence of parallel motions insures that the rate of change of 
F  with time will depend, after a short time, only on itself and 
not on the initial correlations present in the gas. Jp/jt 
is then "synchronized" to F , that is 

Z/re-'V^^fF^        <W / (8.31) 
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This is to be contrasted with the conditions for the synchroniza- 

tion of F3(s*l)     to F1. It is the vanishing of the initial 

correlations for large interpartide separations that insures the 

latter. This separat retirement of kinetic theory is expressed by 

e -* "' F "(o) -^BC?*] *» \y       (8.3a) 

We ^ee, therefore, that our condition establishes the role of the 

assumption made by Bogolubov in his fundamental investigation on 

the dynamical theory of gaset . 

The kinetic equations that we have derived are those obtained 

by Bogolubov. We have, however, gained insight into the manner in 

which a gas approaches the kinetic regime by actually deriving 

the conditions that make such a kinetic description of the system 

possible. We are therefore able to understand the circumstances 

thar, lead to the synchronization of F  and FJ to F  on the 
QF' 1 

one hand and for 3i~  to F  on the other. The streaming 

boundary condition of Bogolubov is, in fact, a statement con- 

cerning the weakening of the correlations, 

^3 =° (8.33) 

which clearly insures the disappearance of all terms of both forms 

C      °3 ,   |_e       y (8-34) 

when a time large compared with ^o/Vj     has elapsed. 

From our formulae for the transient behavior of F  and FJ 

on the £^  time scale, it is clear that the condition (8.33) in- 

sures the synchronization of the s-body distribution function to 

F  for large 7?0 

The Bogolubov synchronization cannot be valid in the entire 
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phase space. Thus, for example, in the simple initial value 

problem, when )L\i.-0 

i-r- %iT£ 
21       P persists in P   and F 

fails therefore to become synchronized to F  in some region 

i.e., a specific dependence on f0 

9fi' 
of phase space. 

The synchronization of 

that the quantity It 

L 3.°(o) 

to F  requires not only 

(8.35) 

should vanish for large *£  , as insured by (8.33), but further 

that it should disappear sufficiently fast to prevent its own 

time integral from growing. This can be insured only be giving 

-Ä. cöj  a finite range in the space variable and by requiring 

4*(o)    to satisfy the condition (8.34) (in the relative velocity 
variable). It is now clear why this condition, which we have 

derived from the Liouville equation and which requires the "absence 

of parallel motions" in the initial state of the system, is to be 

regarded as a fundamental requirement for kinetic theory. 
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APPENDIX 

A SIMPLE EXAMPLE 

We discuss a simple differential equation to indicate the 
full implications of extending a function beyond the needs of 
the expansion. 

Consider the simple exponential 
■£t 

with   £<>1       .    It  satisfies 

and 

m * 1 
Clearly, the minimal extension: 

I -% 

(Al) 

(A2) 

(A3) 

(A4) 

suffices the eliminate completely from the extended function the 
G    dependence. Thus, it would suffice to consider a two- 

dimensional extended domain ( T0   *£t       ) and the cylindrical ex- 
tension as shown: L 
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Consider the Hilbert space 

rs,. e h6 

and the extensions 

f %)-*!?£) 
w..ere we set 

#<)-l€*ffc) 
IUO 

(A5) 

(A6) 

(A7) 

li 

f\: 

We find immediately 

^ 0 

PZi  SET, 

(A8) 

(A9) 

(A10) 

ana so on. 

Let us confine ourselves for a moment to 

f*£Ve£' (All) 
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then we have 

P21 
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(A12) 

(A13) 

and also 

if1     n£* 
nt + ^r    ~0 h ü (A14) 

Therefore 

(A15) 

2Z5       '**>*%      9 2r^° (A16) 

n4     ' P?^Z¥ \?zr 
r° (A17) 

and so on. We must separate the linear term whence 

«rffe,... O Mfe,z^... &)+■ rx6(r,... r,)       (Al3) 



Therefore, 

*0 h>2 (A19) 

<*fe, %,.-,, tu> Afe. * •< rJ+ r*B (A20) 

where B* is a true constant. The process can be continued 

indefinitely with the result that °<   and p        are linear with 

well determined coefficients in all the f^(\n>^\. 

Substituting in (A12) and (A13) then in (All), one finds that 

these constants do not cancel, but restricting now with (A5) one 

simply has 

(A3) then gives 

<L --1 ,   \o  =0 (A22) 

Tf T_  is kept one has a much longer computation to do. 

The general answer is quadratic In the Z^       . But, after 

restriction, again the superfluous constants cancel. 

If all the r   are kept, one has to cancel not constants, 

but functions, 

Closure can be invoked after the first approximation when 

there are no further non-uniformities In the expansion and one 

can therefore drop all the higher corrections to the time deriva- 

tive. 
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